GENERALIZED SEVENTH ORDER KORTEweg-de VRIE S EQUATIONS BY
OPTIMAL HOMOTOPY ASYMPOTIC METHOD

S. Zuhra1, H. Ullah3*, I. A. Shah4, S. Islam2, R. Nawaz1 M. Ayaz1
1Department of Mathematics, Islamia College Chartered University Peshawar
2Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan

Contact: hakeemullah1@gmail.com

ABSTRACT: An advance newly technique known as Optimal Homotopy Asymptotic Method (OHAM) is applied on one of the type of time dependent partial differential equation named as generalize Korteweg-de Vries (gKdV) equation. To observe the standardization of this algorithm, seven order KdV is considered with different coefficients to form Lax's 7th order KdV (LskdV) and 7th order Sawada Kotera (sSK) equations. It is observed that OHAM is effective and reliable during the process; approximate solution obtained by OHAM is compared with exact solution in order to check accuracy.

Key Word: Optimal Homotopy Asymptotic Method, Korteweg-de Vries equation, Sawada Kotera equation,

1. INTRODUCTION:
Complex and higher order nonlinear differential equations and its analytical solutions and modeling are given priority on the basis of its importance in the field of physical science and engineering. In this category, considerable attention has been given toward the analysis of wave and soliton equations, which are essential feather of fluid mechanic and engineering etc. Several perturbation techniques have been introduced and developed to solve such strongly nonlinear equations although perturbation techniques produced great interest in researchers, so fast improvement was brought by these researchers though perturbation techniques have some limitations, the great drawback of these techniques is the presence of suppose parameter which caused uncertainty during the process of computation and often result tend toward divergence region specially in the case of strongly nonlinear equations. With the requirements of time, many other effective methods was developed which are unperturbed in natures, the approximate solutions obtained by these methods are reliable, like Homotopy Analysis Method[1], Homotopy Perturbation Method [1-3] etc. Recently a new semi analytical method named as Optimal Homotopy Asymptotic Method (OHAM) [4-8] was introduce by Marinca and Harisaniu, the background of OHAM is seem to be impressed by HPM tool, but OHAM is considered modified then other all methods. Advancement occurred in the field of nonlinear differential equations by using this tool as a treatment. The main consideration of this paper is to implement OHAM on the following Korteweg-de Vries equations which are as under

\[w_2 + 35w_4 + 70(w_2^{w_2}w_{w_2} + w_2^{w_2}w_{w_2}) + 7(2w_2^{w_2}w_{w_2} + 3w_2^{w_2}w_{w_2}) + w_{w_2} = 0, \] \[w_2 + 63w_4 + 63(2w_2^{w_2}w_{w_2} + w_2^{w_2}w_{w_2}) + 21(w_2^{w_2}w_{w_2} + w_2^{w_2}w_{w_2}) + w_{w_2} = 0, \]

Equation (a) and (b) are known as Lax's 7th order KdV [15] and 7th order Sk [16] equations respectively. Names of both equations are changed due to the difference in coefficients of (a) and (b). The OHAM extension and modification along with applications can be seen in [10-25]

2. Basic mathematical theory of Optimal Homotopy Asymptotic Method

OHAM is used to the following equation:

\[L(w(\xi, \tau)) + N(w(\xi, \tau)) + g(\xi, \tau) = 0, \quad B(w, w_{\tau}) = 0 \] \[(2.1) \]

Where \(\xi \) and \(\tau \) are independent variables, \(L \) is a linear operator, \(w(\xi, \tau) \) is consider as an unknown function, \(g(\xi) \) is consider as known function, the operator \(N(w(\xi, \tau)) \) is nonlinear and \(B(w, w_{\tau}) \) is a taken as

\[(1-q)[L(\phi(\xi, \tau, q)) + g(\xi, \tau)] = H(q)[L(\phi(\xi, \tau, q)) + g(\xi, \tau) + N(\phi(\xi, \tau, q))], \quad B(\phi(\xi, \tau, q)) = 0 \] \[(2.2) \]

Where \(\phi(\xi, q) \) is an unknown function. \(q \in [0, 1] \) is an embedding parameter, while \(H(q) \) is a nonzero auxiliary function for \(q \neq 0 \) and \(H(0) = 0, \) when \(q = 0 \) and \(q = 1, \) it holds that

By increasing \(q \) from 0 to 1, the solution \(\phi(\xi, q) \) varies from \(w_0(\xi, \tau) \) to the final solution \(w(\xi, \tau), \) where

July-August
\(w_0(\xi, \tau) \) is evaluated from eqn (2.2) for \(q = 0 \):
\[
\mathcal{L}\left(w_0(\xi, \tau)\right) + g(\xi, \tau) = 0, \quad \mathcal{B}(w_0, w_0) = 0.
\] (2.4)

The auxiliary function \(\mathcal{H}(q) \) is taken in the form of
\[
\mathcal{H}(q) = qK_1 + q^2K_2 + ...
\]

Where auxiliary constants \(K_1 \) and \(K_2 \) can be determined in this manner. Next the method expands \(\varphi(\xi, \tau; q; K_i) \) in a Taylor's series about the parameter \(q \) as [2]
\[
\varphi(\xi, \tau; q; K_i) = w_0(\xi, \tau) + \sum_{k=1}^n w_k(\xi, \tau; K_i)q^k, \quad i = 1, 2, ...
\] (2.5)
\[
\mathcal{L}\left(w_1(\xi, \tau)\right) = K_1\mathcal{N}_0\left(w_0(\xi, \tau)\right), \quad \mathcal{B}(w_0, w_0) = 0
\] (2.7)
\[
\left\{ \begin{aligned}
\mathcal{L}\left(w_2(\xi, \tau)\right) &- \mathcal{L}\left(w_1(\xi, \tau)\right) = K_2\mathcal{N}_0\left(w_0(\xi, \tau)\right) + K_1\left(\mathcal{L}\left(w_1(\xi, \tau)\right) + \mathcal{N}_1\left(w_0(\xi, \tau)\right)\right), \\
\mathcal{B}(w_0, w_{\xi}) & = 0
\end{aligned} \right.
\] (2.8)
\[
\left\{ \begin{aligned}
\mathcal{L}\left(w_k(\xi, \tau)\right) &- \mathcal{L}\left(w_{k-1}(\xi, \tau)\right) = K_k\mathcal{N}_0\left(w_0(\xi, \tau)\right) + \\
&\sum_{i=1}^{k-1} K_i \left(\mathcal{L}\left(w_{i}(\xi, \tau)\right) + \mathcal{N}_{k-i}\left(w_0(\xi, \tau), w_1(\xi, \tau), ..., w_{k-i}(\xi, \tau)\right)\right)
\end{aligned} \right.
\quad k = 2, 3, 4, ...
\] (2.9)

The resulting linear problems can now be solved and their solutions are used to construct \(k^\text{th} \) order solution that involves \(K_i \) of the original problem through equation (2.6). Then by inserting equation (2.6) into equation (2.1), they results the following residual:
\[
R(\xi, \tau; K_i) = \mathcal{L}(\tilde{w}^{(m)}(\xi, \tau; K_i)) + g(\xi, \tau) + \mathcal{N}(\tilde{w}^{(m)}(\xi, \tau; K_i))
\] (2.10)

When \(R(\xi, K_i) = 0 \), for some values of \(K_i \) then \(\mathcal{L}(\tilde{w}^{(m)}(\xi, \tau; K_i)) \) will coincide with the exact solution.

However, this does not happen in general especially in nonlinear problems. Therefore, optimal values of the auxiliary constants \(K_1, K_2, ..., K_n \) are calculated aimed at minimizing the following functional \(J \), see [2]
\[
J(K_1, K_2, ..., K_n) = \int_0^1 R^2(\xi, K_1, K_2, ..., K_n) d\xi
\] (2.11)

Therefore, the unknown constants \(K_i (i = 1, 2, ..., m) \) can be optimally identified from the following conditions, see [2]
\[
\frac{\partial J}{\partial K_1} = \frac{\partial J}{\partial K_2} = \cdots = \frac{\partial J}{\partial K_m} = 0.
\] (2.12)

With these known values of the auxiliary constants the approximate solution (2.6) is now well determined.

3. Application of OHAM by Numerical Examples

To analysis the reliability of OHAM, Two models of Lax’s 7th order KdV and 7th SK equations are presented by OHAM.

Model 1: Considered Eqn (a) with the initial condition [9]:
\[
w_0(\xi, 0) = 2k^2 \left(\sec h^2(k\xi)\right), \quad (3.1)
\]

Corresponding exact solution is
\[
w(\xi, \tau) = 2k^2 \left(\sec h^2(k(\xi - 64k^6\tau))\right). \quad (3.2)
\]

Where \(k \) is arbitrary constant.
Zeroth Order Problem

\[
\frac{\partial w_0(\xi, \tau)}{\partial \tau} = 0, \quad (3.3)
\]

Its solution is

\[
w_0(\xi, 0) = 2k^2 \left(\sec h^2(k\xi) \right), \quad (3.4)
\]

First Order Problem

\[
\frac{\partial w_1(\xi, \tau)}{\partial \tau} = (1 + K_1) \frac{\partial w_0(\xi, \tau)}{\partial \tau} + 35K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^4 + 70K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^2
\]

\[
+ 28K_1 \left(\frac{\partial^2 w_0(\xi, \tau)}{\partial \xi^2} \right)^2 + 70K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right) + 21K_1 \left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right)^2
\]

\[
+ K_1 \left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right),
\]

\[
w_1(\xi, 0) = 0, \quad (3.7)
\]

Its solution is

\[
w_1(\xi, \tau, K_1) = 128\tau K_1 h^8(k\xi) \tan h^8(k\xi) \tan h^8(k\xi) - 35k^{11} \sec h^8(k\xi) \tan h^8(k\xi) + 616k^{10} \sec h^8(k\xi) \tan h^8(k\xi) - 384k^9 \sec h^8(k\xi) \tan h^8(k\xi) + 420k^{11} \sec h^8(k\xi) \tan h^8(k\xi) + 70k^{12} \sec h^8(k\xi) \tan h^8(k\xi) + 120k^9 \sec h^8(k\xi) \tan h^8(k\xi) - 280k^{11} \sec h^8(k\xi) \tan h^8(k\xi) + 126k^{10} \sec h^8(k\xi) \tan h^8(k\xi) - 2k^9 \sec h^8(k\xi) \tan h^8(k\xi) \tan(h(k\xi)) - 35k^{11} \sec h^8(k\xi) \tan h^8(k\xi) + 616k^{10} \sec h^8(k\xi) \tan h^8(k\xi) - 384k^9 \sec h^8(k\xi) \tan h^8(k\xi) + 420k^{11} \sec h^8(k\xi) \tan h^8(k\xi) + 70k^{12} \sec h^8(k\xi) \tan h^8(k\xi) + 120k^9 \sec h^8(k\xi) \tan h^8(k\xi) - 280k^{11} \sec h^8(k\xi) \tan h^8(k\xi) + 126k^{10} \sec h^8(k\xi) \tan h^8(k\xi) - 2k^9 \sec h^8(k\xi) \tan h^8(k\xi) \tan(h(k\xi))
\]

Second Order Problem

\[
\frac{\partial w_2(\xi, \tau)}{\partial \tau} = \frac{\partial w_1(\xi, \tau)}{\partial \tau} + (1 + K_1) \frac{\partial w_1(\xi, \tau)}{\partial \tau} + 35K_2 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^4 + 140K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 + 70K_2 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right) + 21K_2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)^2 + 70K_2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)^2 + 21K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2
\]

\[
+ 140K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right) + 70K_2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)^2 + 21K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right) + 140K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)
\]

\[
+ 28K_1 \left(\frac{\partial^2 w_1(\xi, \tau)}{\partial \xi^2} \right)^2 + 28K_1 \left(\frac{\partial^2 w_1(\xi, \tau)}{\partial \xi^2} \right) \left(\frac{\partial^4 w_1(\xi, \tau)}{\partial \xi^4} \right) + 28K_1 \left(\frac{\partial^4 w_1(\xi, \tau)}{\partial \xi^4} \right) \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right) + 14K_2 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^2
\]

\[
+ 14K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right) + 14K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right) + 14K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)
\]

\[
+ K_2 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)^2 + K_1 \left(\frac{\partial^3 w_1(\xi, \tau)}{\partial \xi^3} \right)^2,
\]

\[
w_2(\xi, 0) = 0, \quad (3.10)
\]

Its solution is
By adding (3.3) to (3.12) to obtained approximate solution in the form of

\[\tilde{w}(\xi; \tau; K_1, K_2) = w_0(\xi, \tau) + w_1(\xi, \tau; K_1) + w_2(\xi, \tau; K_1, K_2). \] (3.13)

Using least square method to compute the constant values \(K_1 \) and \(K_2 \) which are as below
$K_1 = -0.769634099690644,$
$K_2 = 0.5206897343781481. \quad (3.14)$

2nd-order approximate solution of OHAM is evaluated by putting constants values K_1 and K_2.

Table 1(a): Comparison of Absolute errors of HPM and OHAM with exact solution for $\tau = 0.1$.

<table>
<thead>
<tr>
<th>ξ</th>
<th>Absolute error HPM [17]</th>
<th>Absolute error OHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.523567x10^{-4}</td>
<td>7.09824x10^{-9}</td>
</tr>
<tr>
<td>0.2</td>
<td>3.046766x10^{-4}</td>
<td>1.19166x10^{-11}</td>
</tr>
<tr>
<td>0.3</td>
<td>4.569652x10^{-4}</td>
<td>7.13055x10^{-9}</td>
</tr>
<tr>
<td>0.4</td>
<td>6.092284x10^{-4}</td>
<td>1.42267x10^{-8}</td>
</tr>
<tr>
<td>0.5</td>
<td>7.614719x10^{-4}</td>
<td>2.12695x10^{-8}</td>
</tr>
</tbody>
</table>

Table 1(b): Comparison of Absolute errors of HPM and OHAM with exact solution for $\tau = 0.3$.

<table>
<thead>
<tr>
<th>ξ</th>
<th>Absolute error HPM [17]</th>
<th>Absolute error OHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.50294x10^{-4}</td>
<td>1.37177x10^{-8}</td>
</tr>
<tr>
<td>0.2</td>
<td>3.00437x10^{-4}</td>
<td>2.12036x10^{-8}</td>
</tr>
<tr>
<td>0.3</td>
<td>4.50436x10^{-4}</td>
<td>5.59122x10^{-8}</td>
</tr>
<tr>
<td>0.4</td>
<td>6.00296x10^{-4}</td>
<td>9.02518x10^{-8}</td>
</tr>
<tr>
<td>0.5</td>
<td>7.50021x10^{-4}</td>
<td>1.24071x10^{-7}</td>
</tr>
</tbody>
</table>

Table 1(c): Comparison of Absolute errors of HPM and OHAM with exact solution for $\tau = 0.5$.

<table>
<thead>
<tr>
<th>ξ</th>
<th>Absolute error HPM [17]</th>
<th>Absolute error OHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.49674x10^{-8}</td>
<td>7.09824x10^{-9}</td>
</tr>
<tr>
<td>0.2</td>
<td>2.30446x10^{-8}</td>
<td>1.19166x10^{-11}</td>
</tr>
<tr>
<td>0.3</td>
<td>5.5033x10^{-8}</td>
<td>7.13055x10^{-9}</td>
</tr>
<tr>
<td>0.4</td>
<td>7.5796x10^{-8}</td>
<td>1.42267x10^{-8}</td>
</tr>
<tr>
<td>0.5</td>
<td>2.12695x10^{-8}</td>
<td>2.12695x10^{-8}</td>
</tr>
</tbody>
</table>

Fig 1(a): The graphs of exact solution in comparison with numerical results for $\vec{\omega}(\xi,\tau)$ through OHAM of model 1.

Fig 1(b): Graph of absolute error of OHAM with exact solution of model 1.

July-August
Model 2: Considered Eqn (b) with the initial condition [9]:

\[w(\xi, 0) = \frac{4}{3} k^2 \left(2 - 3 \left(\tan^2 \left(k\xi \right) \right) \right), \quad (3.15) \]

with exact solution is

\[w(\xi, \tau) = 0.75 k^2 \left(2 - 3 \tan^2 \left(k\xi \right) - \frac{256 k^6 \tau}{3} \right). \quad (3.16) \]

Where \(k \) is arbitrary constant.

By substituting Eqn (a) with corresponding initial condition in Eqn (2.2), Zeorth, first, second order can be obtained

Zeroth Order Problem

\[\frac{\partial w_0(\xi, \tau)}{\partial \tau} = 0, \quad (3.17) \]

its solution is

\[w_0(\xi, 0) = \frac{4}{3} k^2 \left(2 - 3 \left(\tan^2 \left(k\xi \right) \right) \right). \quad (3.18) \]

First Order Problem

\[\frac{\partial w_1(\xi, \tau)}{\partial \tau} = (1 + K_1) \frac{\partial w_0(\xi, \tau)}{\partial \tau} + 63 K_1 \left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right)^4 + 63 K_1 \left(\frac{\partial^2 w_0(\xi, \tau)}{\partial \xi^2} \right)^2 + 126 K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^2 + 21 K_1 \left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right)^2 + 21 K_1 \left(\frac{\partial^2 w_0(\xi, \tau)}{\partial \xi^2} \right)^2 \quad (3.20) \]

\[\left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right)^4 + 21 K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^2 \left(\frac{\partial^3 w_0(\xi, \tau)}{\partial \xi^3} \right)^2 + K_1 \left(\frac{\partial^2 w_0(\xi, \tau)}{\partial \xi^2} \right)^2, \quad (3.21) \]

its solution is

\[w_1(\xi, \tau, K_1) = 256 \tau K_1 \left(-42 k^{10} \sec h^{10}(k\xi) + 124 k^9 \sec h^8(k\xi) \tanh(k\xi) - 126 k^{11} \sec h^{10}(k\xi) \tanh(k\xi) + 1365 k^{10} \sec h^8(k\xi) \tanh^2(k\xi) - 384 k^9 \sec h^8(k\xi) \tanh^3(k\xi) + 2520 k^{11} \sec h^8(k\xi) \tanh^4(k\xi) - 1932 k^{10} \sec h^6(k\xi) \tanh^4(k\xi) + 1008 k^{12} \sec h^8(k\xi) \tanh^4(k\xi) + 120 k^9 \sec h^4(k\xi) \tanh^5(k\xi) - 1512 k^{11} \sec h^6(k\xi) \tanh^5(k\xi) + 252 k^{10} \sec h^4(k\xi) \tanh^6(k\xi) - 2 k^9 \sec h^2(k\xi) \tanh^7(k\xi) \right) \quad (3.22) \]
Second Order Problem

\[
\frac{\partial w_2(\xi, \tau)}{\partial \tau} = \frac{\partial w_0(\xi, \tau)}{\partial \tau} + (1 + K_1) \frac{\partial w_1(\xi, \tau)}{\partial \tau} + 63K_2 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^4 + 252K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) + \\
63K_2 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^3 + 63K_2 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right)^2 + 63K_1 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right)^2 + \\
126K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + 126K_2 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + \\
252K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + 21K_2 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + \\
21K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + 21K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + \\
126K_2 \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + 126K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + \\
21K_2 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + 21K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + \\
21K_1 \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_1(\xi, \tau)}{\partial \xi} \right) \left(\frac{\partial w_0(\xi, \tau)}{\partial \xi} \right) + \\
K_2 \left(\frac{\partial^7 w_0(\xi, \tau)}{\partial \xi^7} \right) + K_1 \left(\frac{\partial^7 w_1(\xi, \tau)}{\partial \xi^7} \right),
\]

\(w_2(\xi, 0) = 0\). \hspace{1cm} (3.24)

Its solution is

\(w_2(\xi, \tau, K_1, K_2) = -256(42k^{10} \tau \text{sec} h^{10}(k\xi)(K_1 + K_1^2 + K_2) + 14873104K_1^2 k^{16} \tau^2 \text{sec} h^6(k\xi) - 132757632K_1^2 k^{18} \tau^2 \text{sec} h^8(k\xi) + 2286144K_1 k^{20} \tau^2 \text{sec} h^{20}(k\xi) - 124k^9 \tau \text{sec} h^8(k\xi) \text{tanh}(k\xi)(K_1 + K_1^2 + K_2) + 126k^{11} \tau \text{sec} h^{10}(k\xi) \text{tanh}(k\xi)(K_1 + K_1^2 + K_2) + 1098840960K_1 k^{17} \tau^2 \text{sec} h^{16}(k\xi) \text{tanh}(k\xi) - 690923520K_1 k^{19} \tau^2 \text{sec} h^{18}(k\xi) \text{tanh}(k\xi) - 3655 k^{10} \tau \text{sec} h^6(k\xi) \text{tanh}^2(k\xi)(K_1 + K_1^2 + K_2) - 700801 \text{sec} h^8(k\xi) \text{tanh}^2(k\xi)(K_1 + K_1^2 + K_2) + 864K_1 k^{16} \tau^2 \text{sec} h^{14}(k\xi) \text{tanh}^2(k\xi) + 9693472320K_1 k^{16} \tau^2 \text{sec} h^{16}(k\xi) \text{tanh}^2(k\xi) - 697527936K_1 k^{20} \tau^2 \text{sec} h^8(k\xi) \text{tanh}^2(k\xi) + 384k^9 \tau \text{sec} h^6(k\xi) \text{tanh}^3(k\xi)(K_1 + K_1^2 + K_2) - 2520k^{11} \tau \text{sec} h^8(k\xi) \text{tanh}^3(k\xi)(K_1 + K_1^2 + K_2) - 16868980K_1 k^{17} \tau^2 \text{sec} h^{14}(k\xi) \text{tanh}^3(k\xi) + 19886146560K_1 k^{19} \tau^2 \text{sec} h^{16}(k\xi) \text{tanh}^3(k\xi) - 162570240K_1 k^{21} \tau^2 \text{sec} h^{18}(k\xi) \text{tanh}^3(k\xi) + 1932k^{10} \tau \text{sec} h^8(k\xi) \text{tanh}^4(k\xi)(K_1 + K_1^2 + K_2) + 1008k^{12} \tau \text{sec} h^8(k\xi) \text{tanh}^4(k\xi)(K_1 + K_1^2 + K_2) + 360045...

July-August
which are as below

\[K_i = 1.084259592197655, \]

\[K_2 = 0.8831984610365042. \]

2nd order approximate solution of OHAM is evaluated by putting constants values \(K_i \) and \(K_2 \).

Table 2(a): Comparison of Absolute errors of HPM and OHAM with exact solution for \(\tau = 0.1 \).

<table>
<thead>
<tr>
<th>(\xi)</th>
<th>Absolute error HPM</th>
<th>Absolute error OHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>9.68087×10⁻¹</td>
<td>3.24071×10⁻⁹</td>
</tr>
<tr>
<td>0.2</td>
<td>1.93593×10⁻¹</td>
<td>1.26255×10⁻⁹</td>
</tr>
<tr>
<td>0.3</td>
<td>2.90358×10⁻¹</td>
<td>5.77130×10⁻⁹</td>
</tr>
</tbody>
</table>

Table 2(b): Comparison of Absolute errors of HPM and OHAM with exact solution for \(\tau = 0.3 \).

<table>
<thead>
<tr>
<th>(\xi)</th>
<th>Absolute error HPM</th>
<th>Absolute error OHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>9.63425×10⁻⁵</td>
<td>1.65768×10⁻⁵</td>
</tr>
<tr>
<td>0.2</td>
<td>1.92540×10⁻⁴</td>
<td>3.16429×10⁻⁴</td>
</tr>
<tr>
<td>0.3</td>
<td>2.88597×10⁻⁴</td>
<td>4.64205×10⁻⁴</td>
</tr>
<tr>
<td>0.4</td>
<td>3.84516×10⁻⁴</td>
<td>6.08325×10⁻⁴</td>
</tr>
<tr>
<td>0.5</td>
<td>4.80300×10⁻⁴</td>
<td>7.48078×10⁻⁴</td>
</tr>
</tbody>
</table>
Table 2(c): Comparison of Absolute errors of HPM and OHAM with exact solution for $\tau = 0.5$.

<table>
<thead>
<tr>
<th>ξ</th>
<th>Absolute error HPM</th>
<th>Absolute error OHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>9.51987×10^{-5}</td>
<td>7.14596×10^{-3}</td>
</tr>
<tr>
<td>0.2</td>
<td>1.90135×10^{-4}</td>
<td>9.91635×10^{-4}</td>
</tr>
<tr>
<td>0.3</td>
<td>2.84813×10^{-4}</td>
<td>1.25879×10^{-3}</td>
</tr>
<tr>
<td>0.4</td>
<td>3.79236×10^{-4}</td>
<td>1.51446×10^{-3}</td>
</tr>
<tr>
<td>0.5</td>
<td>4.73405×10^{-4}</td>
<td>1.75725×10^{-3}</td>
</tr>
</tbody>
</table>

CONCLUSION

7th order Kdv and SK equations have been selected for the application of our suggested algorithm OHAM. Table 1(a)-1(c) and table 2(a)-2(c) have been illustrated for the comparison between OHAM and HPM. It is observed that OHAM provide remarkable results for different values of ξ and τ, the convergence rate of OHAM toward exact solution is too fast as compared to HPM. The analysis of Fig. 1(a) and Fig. 2(a) demonstrate OHAM as significant tool for computing semi analytic solutions of high nonlinear equations.

REFERENCES:

5. V. Marinca and N. Herisanu, Application of Optimal Homotopy Asymptotic method for solving nonlinear

