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ABSTRACT – This paper studies the use of Graph Neural Networks (GNNs) in Cross-Domain Recommendation (CDR), 

focusing on challenges related to knowledge transfer and domain disentanglement. GNNs' capability to capture complex 

relationships within user-item domains is further studied and explored. This study evaluates different GNN approaches and 

discusses potential future research directions. This exploration contributes to the deeper understanding and potential 

developments in Cross-Domain Recommendation 
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1 INTRODUCTION 

Cross-domain recommendation (CDR) is a technique that 

addresses two common challenges in traditional 

recommender systems: data sparsity and the cold-start 

problem, which refers to the difficulty of making 

recommendations with limited user-item interaction data [1]. 

CDR enhances recommendation systems by leveraging 

insights from various domains. However, implementing CDR 

presents its challenges. One major challenge is domain 

disentanglement, which involves effectively separating 

domain-invariant (common across domains) and domain-

specific (unique to each domain) representations in the data 

[2]. Another challenge is dealing with biases that may arise 

during cross-domain mapping. These biases, often favoring 

co-users or certain interaction patterns, can overpower 

learned embeddings and negatively impact predictions across 

other domains [3].  

To address challenges on CDR, this project aims to utilize 

Graph Neural Networks (GNNs), a member of neural 

networks specifically engineered to function on graph data 

structures, to enhance the representation of complex user-

item transitions and interactions, thereby improving 

information propagation across different domains [4]. 

Additionally, GNNs' ability to efficiently learn and represent 

data structures can lead to improved feature engineering of 

domains [5,6]. This, in turn, can help address the challenge of 

domain disentanglement in CDR. 

2 METHODOLOGY 

2.1 Cross-Domain Recommendation Framework – This 

section delves into the details of how GNNs and their various 

types perform in embedding, mapping, and evaluation. A 

general cross-domain framework is presented as illustrated in 

[5, Figure 1], and the application of this framework to other 

GNN models. 

 
Fig. 1. A general cross-domain framework adapted from the 

study of Lin et al. (2021). 

 

This framework uses a GNN to process two graphs (source 

and target) and outputs a result that represents predicted 

relationships between data points. 

2.1.1 Data Preprocessing: Preparing the data in tabular 

format, having rows and columns, and graph format where 

nodes represent users and items, and edges represent 

interactions between users and items. Since there are two 

domains, two separate tables and graphs are created. 

2.1.2 Graph Embedding: Using GNN to learn embeddings 

for the nodes in the graph. The GNN captures the topological 

structure of the graph and the features of the nodes. The GNN 

types include Graph Convolutional Networks (GCN), Graph 

Attention Networks (GAT), GraphSAGE, Graph 

Isomorphism Networks (GIN), ChebNet, and ARMANet. 

These architectures are selected based on their suitability for 

capturing different aspects of the complex cross-domain 

connections present in the datasets. 

2.1.3 Adversarial Training: Adversarial training is 

incorporated to enhance the robustness of the learned 

embeddings. A Contrastive Loss function is utilized, which 

optimizes the quality of embeddings by increasing the 

distance between positive samples and decreasing the 

distance between positive and negative samples. This 

adversarial training strategy encourages the model to create 

more discriminative embeddings, enhancing its ability to 

capture subtle domain-specific features. 

2.1.4 Cross-Domain Mapping: A mapping function is 

learned to translate the embeddings from the source domain 

to the target domain. This function is optimized to minimize 

the distance between mapped embeddings and corresponding 

embeddings in the target domain.  

2.1.5 Visualization. The study adopted a comprehensive 

visualization strategy to interpret and validate the learned 

embeddings. Visual inspection involved plotting the mapped 

source and target embeddings and color-coding them based 

on their Euclidean distances. This approach provides a 

qualitative assessment of the effectiveness of the cross-

domain mapping. 

2.1.6 Evaluation: The performance metrics involve 

computing the average Euclidean distance as a measure of 

how close, on average, the mapped source embeddings are to 

the target embeddings. Other metrics such as Cosine 

Similarity and Pearson Correlation are considered. Smaller 

distances and higher similarities indicate better mapping, 

hence potentially more accurate recommendations. 
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3 RESULTS AND DISCUSSION 

3.1 Dataset 

This study has utilized publicly accessible datasets from 

Amazon across two distinct domains. Each dataset featured 

essential components such as user IDs, item IDs, and implicit 

feedback information, incorporating contextual reviews. To 

streamline processing and maintain simplicity, a subset of 

5000 records from each dataset was selected. The records 

underwent processing in both tabular and graph data 

structures, tailored to the specific demands of diverse 

machine-learning techniques.  

3.2 Case Scenario 

The task at hand was to deduce recommendations predicated 

on user reviews, contingent upon the quality of cross-domain 

mapping. This task sought to establish a connection based on 

implicit review information drawn from both the source and 

target datasets. 

The simulation framework encompassed stages focused on 

data preprocessing, embedding learning, and cross-domain 

mapping. This approach furnished a holistic perspective on 

Cross-Domain Recommendation (CDR) performance 

drawing from empirical results to assess the quality of 

embedding and cross-domain mapping as it is an indicator for 

effective recommendation systems. 

3.3 Performance Comparison 

3.3.1 Traditional ML vs Feed-forward Neural Network 

vs Graph Neural Network 

This research investigates three distinct approaches PCA + 

Linear Regression, Feed-forward Neural Network (NN), and 

Graph Neural Network (GNN). In the implementation, the 

GNN approach employs a Graph Autoencoder with GCN for 

cross-domain embedding and reconstruction, optimizing 

contrastive loss and MSE. It introduced a dedicated model for 

source-to-target mapping, providing qualitative and 

quantitative insights through visualizations. In contrast, PCA 

+ Linear Regression simplifies mapping using PCA for 

feature extraction and linear regression for a straightforward 

source-to-target mapping with an evaluative focus on average 

Euclidean distance. The Feed-forward NN approach 

introduces non-linearity, using MSE loss and the Adam 

optimizer for iterative refinement, striking a balance between 

complexity and adaptability in cross-domain connections. 

 

 
Fig. 2 Visual Inspection for embedding and mapping from 

different techniques 

Figure 2 shows a visual inspection of each approach as part 

of the preliminary result in the simulation with their 

respective embedding learning and cross-domain mapping. In 

individual plots, each square represents a mapped source 

embedding, colored based on its Euclidean distance to the 

corresponding target embedding (represented by crosses). 

Blue squares indicate proximity, an indicator of effective 

mapping.  

The GNN approach shows a higher concentration of blue 

squares, indicating superior performance in cross-domain 

mapping.  This inferred better quality of cross-domain 

mapping, and potentially more accurate recommendations. 

The simulation revealed that graph-structured data aligns 

with data representation as well as the architecture of Graph 

Neural Networks (GNNs). This effectively led to improved 

performance in both embedding and cross-domain mapping.  

During experiments, the task of capturing interactions and 

relations across different domains posed a challenge. A 

thorough analysis of what kind of formatting on data 

structure from different domains is essential for effective data 

representation because it can affect both embedding and 

cross-domain mapping.  

3.3.2 Graph Neural Network and its Types. A 

comparative analysis of six types of Graph Neural Network 

(GNN) models is presented in Table 1, demonstrating varying 

degrees of performance in cross-domain mapping. This 

performance is quantified by three key metrics: average 

Euclidean distance, cosine similarity, and Pearson correlation 

between the mapped source embeddings and their 

corresponding target embeddings.  
Table 1. Performance of different GNN models 

Model 

Average  

Euclidean  

Distance 

Cosine  

Similarity 

Pearson  

Correlation 

GCN 1.001498 0.511066 0.600095 

GAT 0.826638 0.474022 0.574186 

GraphSA

GE 

0.385798 0.323938 0.683932 

GIN 0.010900 0.015322 0.984300 

ChebNet 0.821228 0.499568 0.551848 

ARMANe

t 

0.013439 1.000206 -0.004150 

The Average Euclidean Distance measures the average 

spatial separation between mapped source embeddings and 

their corresponding target embeddings with lower values 

indicating better quality of cross-domain mapping. A higher 

cosine similarity indicates that the mapped source 

embeddings and target embeddings are more similar. 

Moreover, a Pearson correlation close to zero between the 

mapped source embeddings and target embeddings indicates 

that there’s no linear relationship between them, suggesting 

that the model has successfully learned to generate domain-

agnostic embeddings.  

The models GIN and ARMANet outperform others as shown 

in Table 1, indicating their superior ability to learn robust and 

informative embeddings that can be effectively mapped 

across domains. The models GraphSAGE, GAT, ChebNet, 

and GCN also exhibit reasonable performance, but they may 

encounter limitations such as over-smoothing, attention 

sparsity, spectral filtering, or convolutional complexity.  

3.3.3 Adversarial Training. In this section, an 

adversarial training approach is applied to a GNN model, 
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comprising an autoencoder and a domain classifier, aiming to 

enhance the quality of cross-domain mapping. Adversarial 

examples are crafted with the intent to mislead the model, 

causing it to make errors in predictions. This training strategy 

aims to enhance the robustness and generalization of the 

model by exposing it to challenging scenarios. 

The autoencoder learns the input graph data representation, 

while the domain classifier differentiates between 

embeddings from various domains. The adversarial loss 

encourages the generation of domain-agnostic embeddings, 

facilitating cross-domain mapping. Table 2 presents the 

performance metrics of the GNN-GCN model before and 

after adversarial training. 
Table 2. Performance of GNN-GCN model 

Model 

Averag

e  

Euclide

an  

Distanc

e 

Cosine  

Similarity 

Pearson  

Correlation 

without 

adversarial 

training  

1.00149

8 
0.511066 0.600095 

with adversarial 

training 

0.01617

9 
1.000102 -0.001795 

 

With the same performance metric, the result yields better 

than a model with adversarial training having a lower average 

distance, higher similarity, and no linear relationship 

indication. This suggests that adversarial training successfully 

produces non-domain-specific embeddings, enhancing 

generalizability across different domains. 

4.4 Summary of results and key findings 

This study contributes to the research space by demonstrating 

the application of Graph Neural Networks (GNNs) in Cross-

Domain Recommendation (CDR). The key findings of this 

research include the ability of GNNs to leverage graph 

structure, learn robust embeddings, apply these in a cross-

domain context, and disentangle domain-specific and 

domain-independent information making them a powerful 

tool for improving recommendation performance.  

The most significant key finding of this study is its focus on 

the quality of data embedding and mapping in CDR. By using 

GNNs, this research has shown that it’s possible to create 

high-quality embeddings that capture both domain-specific 

and domain-independent information. These embeddings can 

then be effectively mapped across domains, leading to 

improved recommendation performance. Although Graph 

Neural Networks (GNNs) have been in existence for some 

time and have demonstrated their effectiveness across diverse 

domains, this research opens up new paths for future 

exploration, particularly in the context of Cross-Domain 

Recommendation (CDR) scenarios. It holds the potential to 

substantially enhance the efficiency and quality of 

recommendations. 

4 CONCLUSION AND RECOMMENDATIONS 
The research conducted in this study has shed light on the 

effectiveness of Graph Neural Networks (GNNs) in cross-

domain recommendation (CDR), particularly in learning 

embeddings and mapping across domains. The challenges 

and limitations of cross-domain recommendation systems, 

such as data sparsity, cold-start problem, domain bias, and 

domain disentanglement, can be addressed by leveraging the 

graph structure of user-item interactions across domains, 

learning domain-invariant and domain-specific embeddings, 

and propagating information effectively through graph 

convolution and attention mechanisms. 

The performance of different GNN model types in CDR 

implementation varies depending on the graph construction, 

the message passing scheme, the loss function, and the pre-

training and fine-tuning strategies. The adversarial training 

approach applied to a GNN model in this study has shown 

promising results in producing non-domain-specific 

embeddings, making them more generalizable across 

different domains. 

Looking forward, future research on cross-domain 

recommendation using GNNs might explore more complex 

and realistic cross-domain settings, such as multiple source 

domains, heterogeneous graphs, dynamic graphs, and noisy 

or incomplete data. New issues and trends might arise in 

terms of explainability, fairness, privacy, and robustness of 

GNN-based CDR models. These future directions will further 

contribute to the broader understanding and development of 

cross-domain recommendation systems using GNNs. 
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