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ABSTRACT: For an ordered set W = {wy, w,, ... ,w, } of vertices and a vertex v in a connected graph G, the representation of
v with respect to W is the ordered k-tuple r(v | W) = {d(v, wy), d(v, wy), ..., d(v, wy)}. The set Wis called a resolving set for G
if 'every two vertices of G have distinct representations. A resolving set containing a minimum number of vertices is called a
basis for G. The dimension of G, denoted by B(G) is the number of vertices in a basis of G. These studies expose and elucidate
using the concepts in linear algebra to solve for the metric dimension of hypercube in the article of A. F. Beardon entitled,
“Resolving the Hypercube.” Many results have been established. In particular, the following results have been expose and
elucidated: the metric dimension of the n-dimensional hypercube is less than or equal to n, the metric dimension of n-
dimensional hypercube is less than or equal to the metric dimension of (n+1)-dimensional hypercube, and the metric dimension
of the (m+n)- dimensional hypercube is less than or equal to the metric dimension of the m-dimensional hypercube plus the
metric dimension of n-dimensional hypercube. The extension of results are as follows: the metric dimension of a 10-
dimensional hypercube is equal to 7, the metric dimension of n-dimensional hypercube is less than or equal to n — 3, the metric
dimension of a 12-dimensional hypercube is equal to 8 and the metric dimension of n-dimensional hypercube is less than or
equal to n — 4. This is an expository article with extensions that uses the techniques in linear algebra to solve for the metric
dimension of n-dimensional hypercubes. Our main result is to identify that the set of vertices that resolves a hypercube.
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Scope and Limitations

1. INTRODUCTION.

The concept of metric dimension of a graph was defined as
early as 1950°s but was named then location number instead
of metric dimension. The term metric dimension, which was
used widely rather than location number, was first introduced
by Harary and Melter in 1970’s. Since 1975 much has been
published about the metric dimension of graphs. These
studies focused on the problem of estimating the metric
dimension of hypercube.

Objectives of the Study

The researcher aims to expose the results in the article

entitled “Resolving the Hypercube” by A.F. Beardon. To

achieve this end, the researcher attempted to elucidate the
discussion of the following results and their extensions:

1. The metric dimension of the n-dimensional hypercube is
less than or equal to .

2. The metric dimension of n-dimensional hypercube is less
than or equal to the metric dimension of (n+1/)-
dimensional hypercube.

3. The metric dimension of the (m+n)-dimensional
hypercube is less than or equal to the metric dimension
of the m-dimensional hypercube plus the metric
dimension of n-dimensional hypercube.

4. To provide a thorough discussion of the different
concepts used in this paper.

Significance of the Study

In their study, Caseres et al. (2007) pointed out that resolving

sets arise in many diverse areas including coin weighting,

network discovery and verification, robot navigation and
strategies for the Mastermind game.

Furthermore, the results of this study will go a long way

towards a more complete understanding of the metric

dimension of graphs. In the future, this study may serve as a

link between the present information on metric dimension of

graphs and future investigation on the subject.

Moreover, the results generated in this study are important as

they may lead to further related studies and trigger more

substantial results on this topic.

Basically, this study deals mainly on metric dimension in
graphs. Focusing on finding the metric dimension of
hypercubes. To attain the objectives, we use the concepts
similar to those found in algebra.

Review of Related Literature and Studies

The concept, Metric Dimension in Graphs was introduced
in1953 by Blumenthal. However, from 1953 to 1974, it did
not grab much attention. In 1975, Chartrand (2000) presented
the problem on estimating the value of f,. The problem
seemed to have spur up the interest on the concept, thus,
much has been published about the metric dimension of
graphs, for example Bailey (2010), Caseres et al. (2007),
Chartrand (2000) and Harary (1976).

So far, the known values of f, are

n ,ifn =123 4,
n-1 ,ifn=56,7
n-2 ,ifn=89
p,=1n-3 ,ifn=1011
n-4 ,ifn=1213
n-5 ,ifn=14,1516
n-6 ,ifn=17

(Caseres et al., 2002; Kratica et al., 2009). Most of these
results are verified using computer search.

The metric dimension of the hypercube p,, satisfy the
inequalities B, < n, Bn < Bur1, and By < Bt Bo. (Lindstrom,
1964). He also proved that; nlog2/log(n+1) is a lower bound
for f,. Deeper probabilistic arguments would show that
Pi~nlogd/logn as n increases without a bound. (Lindstrom,
1965).

Beardon (2013) used techniques from linear algebra to verify
the inequalities suggested by Lindstrom (1964). Beardon
(2013) reduced the question of whether a set of vertices
resolves the hypercube to the question of whether or not a set
of linear equations has a non-trivial solution.

Earlier, Harary et al. (1988) proved that every hypercube
graph is bipartite. The two colors of this coloring may be
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found from the subset construction of hypercube graphs, by
giving one color to the subsets that have an even number of
elements and the other color to the subsets with an odd
number of elements.

Moreover, they proved that every hypercube graph is
Hamiltonian and every hypercube Q" with n > 1 has a
Hamiltonian cycle which is a cycle that visits each vertex
exactly once. Additionally, a Hamiltonian path exists between
two vertices u and v if and only if they have different colors
in a 2-coloring of the graph. This is called, Hamiltonicity.

The Hamiltonicity of the hypercube is tightly related to the
theory of Gray codes. More precisely, it days that there is a
bijective correspondence between the set of n-bit cyclic Gray
codes and the set of Hamiltonian cycles in the hypercube Q".
An analogous property holds for acyclic n-bit Gray codes and
Hamiltonian paths. A lesser known fact is that every perfect
matching in the hypercube extends to a Hamiltonian cycle.
The question whether every matching extends to a
Hamiltonian cycle remains an open problem. (Rusky et al.,
2007)

Other properties of the hypercube are as follows(Harary et
al., 1988). The hypercube graph Q" is the Hasse diagram of a
finite Boolean algebra; is a median graph (every median
graph is an isometric subgraph of a hypercube, and can be
formed as a retraction of a hypercube); has more than 22n — 2
perfect matchings (this is another consequence that follows
easily from the inductive construction); is arc transitive and
symmetric; is an n-vertex-connected graph; by Balinski's
theorem, is planar (can be drawn with no crossings) if and
only if n < 3. For larger values of n, the hypercube has genus
and has exactly spanning trees. The family Qn (n > 1) is a
Levy family of graphs.

The achromatic number of Q" is known to be proportional to

\/n2", but the constant of proportionality is not known
precisely. The bandwidth of Q" is exactly

i('_nr/]ZJ] . (Harper, 2001)

i=0

The eigenvalues of the adjacency matrix of a hypercube are
-n,—Nn+2,-n+4K,n—-4,n-2,n and the eigenvalues of its
Laplacian are 0,2K,2n. The #i-th has
multiplicity in both cases. The isoperimetric number is
h(G) =1. (Harary et al., 1988).

The following are open problems. The problem of finding the
longest path or cycle that is an induced subgraph of a given
hypercube graph is known as the snake in the box problem.
Szymanski's conjecture concerns the suitability of a
hypercube as an network topology for communications. It
states that, no matter how one chooses a permutation
connecting each hypercube vertex to another vertex with
which it should be connected, there is always a way to
connect these pairs of vertices by paths that do not share any
directed edge. (Harary et al., 1988)

A graph is an ordered pair (¥, E) where V is a finite non-
empty set and E is a set of some two element subsets of V.
For example, G = ({a, b, ¢}, {ab, bc}) is a graph.

eigenvalue
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Figure 1. The Graph G

For an ordered set W = {Wl,Wz,K ,Wn} of vertices and a

vertex v in a connected graph G, the representation of v with
respect to W is the ordered k-tuple r(v | W) = {d(v, wy), d(v,
wy), ..., d(v, wy)}. The set W is called a resolving set for G if
every two vertices of G have distinct representations. A
resolving set containing a minimum number of vertices is
called a basis for G. The dimension of G, denoted by S(G) is
the number of vertices in a basis of G. Consider the metric
dimension of graph J in figure 2. Let the set W; = {a, e}.
Thenr(a|W,)=(01), r(b|W,)=(11), r(c|W,)=(22),
r(d |Wl)=<2,1>, and r(e|W1)=<l,O W, is a
resolving set of J. Thus, ﬁ(J)SZ. Then by brute force
B(J) #1. Note that as shown by Table 1, W; for i=2, 3, 4, 5,

6 are not resolving set of J. Therefore, W is a minimum
resolving set of J, that is, W] is a basis of J. Accordingly, the
metric dimension of J is equal to 2.

> . Hence,

a

d c
Figure 2: The Graph J

Table 1. Representations of a, b, ¢, d, e with respect to W,, W3,
W4, WSS and W6'

W, ={a} 7y = {b} 7,y ={e} Ws = {d} s = {e}
r(al,)=10) | r(al®)={1) | r(al®,)=1{2) | r(alW,)=(2) | r(al®,)=1{0)
b|Wz <1> b|W2 =<1> ’(b|W2)=<1> :([)|W2):<2> "(b|W2)=<1>
(c|my) =2 | r(cImy)={1y | r(e|my)={0} | r(c|my)={1) | r(c|W,)={2}
J(f”Wz) 2 J(dIWz) @) | r@lm)={) | r(d1m)={0) | r(dIm2)={)
(elWa)={1) | r(elWs)={1) | r(elW)={2) | r(elW,)={1) | r(e|T,)={0)

In graph theory, the n-dimensional hypercube Q" is a graph

whose vertices are the n-dimensional binary vectors, where
two vertices are adjacent if they differ in exactly one
coordinate.

In this study, the metric dimension of a hypercube is denoted
by A(G). The problem of finding the dimension of a
hypercube will be solved using the concepts in linear algebra.
Construction of a Hypercube

The hypercube graph Q" may be constructed using 2" vertices
labeled with n-bit binary numbers and connecting two
vertices by an edge whenever the Hamming distance of their
labels is 1.

Alternatively, 0"/ may be constructed from the disjoint
union of two hypercubes Q”, by adding an edge from each
vertex in one copy of Q" to the corresponding vertex in the

other copy.

Notation: The following notations are used.

0=(0,00,..,0); € =(00,..0); e =(010,..0); ..;
e, =(0,0,0,...,01) and E =(1,11,...,2).
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Consider Q" for n = 3. We haveQ® =(V,E), where V'

={(0,0,0), (0,0,1), (0,1,1), (1,0,0), (0,1,0), (1,1,0), (1,1,1)}
and E = {(0,0,0)0,0,1), (0,0,0(0,1,0), (0,0,0)(1,0,0),
(0,0,1)(0,1,1), (0,0,1)(1,0,1), (0,1,0)(0,1,1), (0,1,0)(1,1,0),
(0,1,1)(1,1,1), (1,0,0)(1,0,1), (1,0,0)(1,1,0), (1,0,1)(1,1,1),
(1,1,0(1,1,1)}. Q’ is show in figure 3.

(0,0,1) (0,1,1)

(1,0,1)

(1,1,1)

(0,0,0)

(0,1,0)

1,0,0
(1.00) (1,1,0)

-

Figure 3. Graph Q°

2. RESULTS AND DISCUSSIONS
Theorem 2.1. The metric dimension of the n-dimensional

nlog2

log(n+1)
Proof. Let S ={V,,V,,V;,...,V.} a resolving set of Q". We first
define 0:V" — A where A={(d(xV,),d(X,V,),...,d(X,V,))
:xeV"} by ya d(y,v,),d(y,V,),...,d(Y,V,)) . Then,

hypercube £, >

Vi <|Al= g, > 110892 w
log(n+1)
Lemma 2.2. If u and v are vertices of Q", then the

hamming distance from u to v denoted, d(u,v) = ||u —v||2 .

Proof. Let uveV". Then

duv) = b, —d,| = Ju-v[’. Wremma 23.
=

Suppose that u and v are vertices of Q".Then
o ¥ 2d (u,v)=n.
Proof. Let u=(b,b,,...,b) and v=(d,d,,...,d ), then
u-E = (bbb (L1 =|u . But,[E[f = n. Thus,
o v (2-E)-(2v—-E)=n-2d(u,v). Therefore,
de ¥ 2d(u,v) = n. W
Theorem 2.4. ( Main Theorem) The set {Vl,vz,...,vm } of
vertices of Q" resolve V"if and only if the solution z of the
linear system Z -% =0, where j=12,...,m, that lies in D"
(difference vector of Q")is the trivial solution 0.
Proof. (=) Suppose {V;,V,,...,V,, | resolves V".
To show: 0 is the only solution of Z ¥ = 0, where
j=212,...,m, in D",
By Lemma 2.3, we
% +2d(x,v,)=n= YW +2d(y,v,)
= (=)W =@yy,)-dxv).

have
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Let w=(w,W,,W,,...,w )be a solution of Z-%f =0,. Then
w-?/ﬂ’:0:> 2(x—y)-%’:0 for
xyeV'= w=2(x-y)=2(0)=0.

some

(<:) Suppose that 0 is a unique solution of Z %’ =0, where
j=12,...,m,.

To show: {V,,V,,...,V,, }resolves V"

d(x,v;)-d(y,v;)=0 for allj=12..m,. If
Z~%’ =0,, then 2(x—y)-%’ =0. In order to see this, By
Lemma 3.3, %(\)/? + 2d(x,%/?) =n and y-%’ + 2d(y,?/‘,’) =n,
(0-99-% + 2[ d (W) - d(y. %) |
=0= (x—y)=0, since 0 is unique solution, this implies
that X =Y . This implies that {v,,,,...
of V" w
Remark 2.5. An equation in two variables may have a
unique solution in D". To see this, consider the equation
2x +X, =0.1If 2X, +X, =0, then X, =-2X,, i.e. X, is even
since X, €{1,0,-1}, x, =0. Hence, X, =0, s0 X =X, =0is
a unique solution of 2X, +X, =0 in D". w

{%’,%,...,%’q} cV".

Suppose

this  implies  that

\V,,} is a resolving set

Theorem 2.6. Let Consider

{vl,vz,...,vm}. Let W be the subspace of ; "spanned by
{Vl,vz,...,vm}and W= be the orthogonal complement of # in
i "o {ViVyeensV, | resolves V'if and only if no non-zero
difference vector in D". lies in W™

Proof. (:>) Suppose {Vl,vz,...,vm} resolves V", let u be a

non-zero difference vector that lie in W™ .Then,
u-¥=0Ku-% =0. By Theorem 2.4, ug D". This is a
contradiction.

(<) Suppose that there is no non-zero vector that lies in
W+,

To show: {V,,V,,...,V, } resolves V".

Consider the linear system

u%:O
u-¥8=0
1
M @
u-¥ =0

Claim: 1f u is orthogonal to every element of {Vl,vz,...,vm} R

then u is orthogonal to W. Let ueV with u-¥0=0for
i=12...m and let weW. If weW, then
w:al%’+a2%/9 +...+am% for a,8,,...,a, €] .
Hence, u-w=u-(a¥+a,¥+..+a ¥0)=0. This shows
the claim.

some
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Let X, be a solution of (1), then X, is orthogonal to
{V,V,,...,V,, } . Hence by the claim, X, is orthogonal to 17, i.e,
X, € W* . Therefore, X, ~0. Accordingly, by Theorem 2.4,
V)V, V,, fresolves V. w

Theorem 2.7. The set {V,,V,,...,V, | spans "
Proof. Suppose {V,,V,,...,V, } spans j "

To show: W =; " .

(g) Clearly W <V =; "

(2) Let

n n

X€Ej Since  {Vy,VyreerVy }

a,a,,...,a, €] .
Hence, x eW (since {V,,V,,...,V, } spans I¥). This shows the

spans |
x:al%hra?% +...+am§’/% for

some

inclusion. W
Lemma 2.8. If {V,,v,,...,v, } spans | " then {v,,V,,...,v,}

resolves V" .
Proof. Let {Vl,vz,...,vm} spans | "

W=;" by fact (2)

Then by Theorem 2.7,

Hence, i "I W*={0}. Since

r
Wiep" WH= {0}, i.e., there is no non-zero difference

vector that lie in W" Therefore
{Vl,vz,...,vm} resolves V".
W

Lemma 2.9. {-E,2¢, —E,2e, —E,2e, —E} spans ; °,
ie. {(-1,-1,-1,-1,-1), (1,-1,-1,-1,-1), (-1, I, -1, -1, —
1)3 (_19 _1: 19 _13 _1)5 (_19 _19 _1’ 19 _1)} spans 51
Proof.  Let Then v=(ab,c,d,e)
a,b,c,d,e e .. We want to find real numbers X, X,,X;,X,, X
s.t. V=X(-E)+x,(2¢e, —E)+x,(2e, — E) +x,(2e, — E)
+X;(2e, —E) 3
Thus, we have the linear system

X X, =X =X, — X =2

by Theorem 2.4,

vej?® where

X =X, + X —X, =X =D
=X+ Xy, =Xy + X, — X% =C
X +X, =X —X, +X% =d
=X, =Xy =Xy — X, —X; =€
We use Gaussian elimination to solve to for the linear system.

Hence, there exists

x =e-1/2(a+b+c+d)e; .
X, =-1/2(e—-a)e; .

X, =-1/2(e-b) e .
X, =-1/2(e-c)e.
X =—1/2(e—d)e; .

s.t. (3) holds. Since v is arbitrary, the remark follows.

W
Theorem 2.10. 3, =3.

Proof: Consider the set {(0,e,,e,)}.

Sci-Int.(Lahore),36(5),383-393,2024
Claim: {(0,e,,e,)} resolves 7.
Let v;=0=(0,0,0), v,=e;=(0,0,1), v;=e,=(0,1,0).
Thus, ¥ =2(0,0,0)—(1L11)=(-1-1-1)
¥ =20,01)-(1) = (-1-11)
%=2(010)- (11D = (-11-D)

Suppose that {v,,v,,v,} resolves V°. Then by Theorem 2.4,
the only solution of the linear system X- %} =0 for
§j=123...,n where x = (x,x,,%,) in D* = Q® is 0.
However, if X~%’=0, x- % =0, x-¥8 =0. That is,
x-(-,-1,-1) =0, x-(-,-1,1)=0, x-(-1,14,-1) =0. Then,

=X =X, =% =0

X =X +X% =0 (4)

X +X =% =0
Using Gaussian elimination, we can solve (4). Thus,x, =0,
X, =0, %, =0. Hence, x=(0,0,0) :b is the only solution
to the linear system X- %} =0 for j=2123...,n where
X = (X, %5, %;) 1N D? c Q3 is 0. Therefore, by Theorem 2.4,
the set {(0,e,,e,)} resolves V. Hence, S =3. W
Theorem 2.11.  The set {0,e,,&,,...,&, ,} resolves V".
Proof: Consider the set {0,e,8,,...,6,;}. Note that
{0,e.e,,...,6, ,} resolves V"

Let
v, =0=(0,0,0.,...,0,0,0)
v, =¢ =(10,0,...,0,0,0)
v, =¢, =(0,10,...,0,0,0)
v, =¢,_, =(000,..,0210)
Thus,

¥=20)-E=-111...,.11) = -1,-1-1..,-1-1-1
W=2e)-E=1-1-1..,-1-1-1
% =2e,)-E=-11-1...,.-1-1-1
M
W, =26 ,)-E=—111...,11) = -1 -1-1...,~L-1-1
Suppose that {V;,V,,V,,...,V, ,} resolves V". Then by theorem

2.4, the only solution of the linear system X- o\/? =0in D" is
1

X=0. Thus,
X=X =X —..—X, =0
X, =X, =X —...— X, =0
X X=X —...— X, =0

M
X =X, =X =t X, X, =0
Note that D" = {(X,,X,,%;,-.., X,) : X € {~=10,1}, j =L2,K ,n}.
Claim. If

linear

X = (X, %5, Xg,.--,X,) 1S a solution to the above

system, then X =X,=X =..=X_,. Thus,
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X, =X, =X =..=X,_,. Accordingly, x=(0,0,0,...,0) = (I)
This shows the claim. By theorem 2.4, {0,e,e,,..,e ,}
resolvesV". Hence, g, < n. W
Lemma 2.12.  {e,e +¢€,,e, +€,} does not resolve V*.
Proof. Consider the set {€,€, +€,,€, +€,} does not resolve
V4 Let v,=¢ =(000), v,=¢ +e, =(010)
v, =€, +e, = (0,110). Thus, ¥ =2v,—E =2(1,0,0,0)
1111 =(L-1-1-1); ¥ =2v,—E=2(1010)—(11L1)
= (1,-11-1); ¥ = 2v, - E = 2(011,0) ~ (L11,1)
= (-111-1). Suppose that {V;,V,,V;} resolves V*. Then by
Theorem 2.4, the only solution of the linear system

x-¥=0

x-¥8 =0

x-¥8=0
in D"is X = b , where X = (X,%,,%,X,). However, if

x-%®=0

x-¥8=0

x-¥8=0

and

That is,

x-(1-1-1-1)=0

x-(L-11-1)=0

x-(-111-)=0
Then,

X, =X, =X —X, =0
X, =X, + X% —X, =0 5)
X +X+%X—X =0

Using Gaussian elimination, we solve (5) . Thus, X, =0
X,=0, X =X. Let X =t
X, =t,X, =0,Xx, =0. Hence, the solution set of (5) is
{(t,t,0,0):t e }.Note that D* ={x—y:x,yeV*}
Observe that, (1,1,0,0) € D*and (1,1,0,0) is a solution of (5)
. This is a contradiction. Hence, {€,,€ +&,,6, +€,} does not
resolve V*. w
Lemma 2.13. Let X,y € V" Then d(x,y)+d(x,E—y)=n.
Proof. Let X =(a,,a,,8,,...,8,)and Y =(b,b,,b,,...,b,) where
a,b {01} for all i=123..n. Consider
E-y={1-b,1-b,,....1-b }. Note that 1-b =0<Db =1
and 1-b =1<b =0 forall i=123,..n.
To show:
1) & #bjifandonlyif & =1-b,,forall i =123,...n.
2) @& =bifandonlyif a #1-b forall i=123..n.
Claim 1.
(=)  Suppose & #b, WLOG, supposed =0, thenb, =1.
Hence, 1-b =0=4a,.

b

where tej , then
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(<)

Suppose & =1-b,. WLOG, supposed =0, then

1-b =0,
Hence, b =1#0=4,.
Claim 2. (=)  Suppose & =b,. WLOG, supposed, =0,

thenb =0. Hence, 1-b #0=4a,.

(<:) Suppose & #1-b . WLOG, supposed =0, then
1-b =1.Hence, b, =0 = &;. This shows the claims.

Let d(x,y)=k. Then there exist I,i,,is,....I, € {L2,...,n}
such that b #a for all i=12..,k, and a =b for all
i#i, for j=12..,k. By the claim, a =1—biJ for all
j=12..k and & #1-Db for all i=i , j=12..k.
d(x,E—y)=n-k.
dx,y)+d(xE-y)=k+(n-k)=n.

Hence, Accordingly,

W
Lemma 2.14.  Let {V,,V,,...,V, } be a resolving set of V".
Then {v,...,v,,;,E—V_} also resolves V".

Proof. Let {v,V,
X,y €V" with x = y. Since {v,,V,
of V",

(d(%V,),d (XY, ) d (V) 2 (A (Y2V,), A (VY )oeeer A (V)

Consider the following cases:

Case 1. d(xv,)=d(y,v,) (WLOG,d(xV,)<d(y,v,)).
If d(x,vm):d(y,vm) , then by Lemma 3.13,
d(xv,)+d(xE-v,)=n=d(y,v,)+d(y,E-v,)
=d(xE-v,)>d(y,E-v,) .Thus,(d(xV,),....d (XV,_,).
A(CE ~V,) # (A(V),e (V) AV, E —V,)).

Case 2. d(xVv,)=d(y,v,) , then (d(xV,),....d(XV,_,),
d(xE-v,)) = [@d(Y,\),.,d (¥:V, 4 ). d(V,E-V,)).
Accordingly, {v,...,v,, ;,E—V_} is also a resolving set of
V. w
Lemma 2.15. If {V,,V,,...
then {v,,V,,....E—V,,...,v,} is a resolving set.
Proof. Let {V,,V,,...
XxyeV"

.V} be a resolving set of V"and

..V, } is a resolving set

WVyseesV, } is a resolving set of V",

,Vk,...,Vm} be a resolving set of V"and

withx=Yy. Since {V,V,...,Vy,oonV,} i a

resolving set of A
(d(%v,),d (XY, )y d (XY ) d(X,V,))
= (d(y,v,),d (VoV, )eeer d (V2V )een A (YLV,)-

Consider the following cases.
Case 1. d(xv, )= d(y,v, )(WLOG,d(xV,)<d(y,v)

If d(x,vk);td(y,vk),thenby Lemma 3.13,
d(xVv)+d(xE-v,)=n=d(y,v,)+d(y,E-V,)
=d(xE-v,)>d(y,E-V,). Thus, (d(XV,),....d(X%V, ),
d(xE—v,)) # (d(¥,\,),-d (VY 1), d (Y, E=V,))
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Case 2. d(xv, ) =d(y,v)

(d (V)0 (X Vi ), dOGE =V, ) = (d (Y, V), d (VoY ),
d(y,E —v,))Accordingly, {V,V,,....E—V,,...,v,} is also a

resolving set of V" . Hence, f, < f,.;)- W
Lemma 2.16 {e +e,+e,+€,+6,6 +€,+6,6, +¢,
e, +6e +6} resolves v°® ie.
{11111),(1110,0),(0,10,1,0),(0,1 10,1} resolves V°.

Proof. Consider the set

{e,+e,+e,+6, +6,6 +6,+6€,8, +€, e, +¢, +¢,}. Claim:
The set {e, +€, +€, +€, +6,6 +€, +€,,6, +€,, e, +e, +¢}.
resolves V°.Let V, =€ +¢€,+6e,+e, +& =(11111),
v, =¢ +e,+¢ =(11100),v, =¢, +e, =(0,1,0,10),
v, =€, +€+6 =(01101) . Thus, ¥ =2v, - E =2(11111)
~(11111) = (11,111), ¥ = 2v, - E = 2(1,1,1,0,0) - (111, 1,1)
=(111-1,-1), ¥ =2v, —E =2(0,1,0,1,0) <(11111)
=(-11-11-1), ¥ =2v, -E =2(0110,1) - (1L1111)
=(-111-11). Suppose that {V;,V,,V,,V,} resolves V°. Then
by Theorem 2.4, the only solution of the linear system

and

x-¥=0
x-¥8 =0
x-¥8=0
x-¥ =0
where X = (X, X,,%;,X,,Xs) in D"is Xzb.However, if
x-¥=0
x-¥8 =0
x-¥8=0
x-¥ =0
that is,
x-(11111) =0
x-(111-1-1)=0
x-(-11-11-1)=0
x-(-111-11)=0.
Then,

X, +X, + X +X +X% =0
X+ X + X =X, —X =0 ®)
— X+ X=X +X —%X=0
=X X X=X, + X =0,
Using Gaussian elimination, we solve (6). Thus, X =X,

X, =% 5 Xg=—2% , X, =—X. Let X, =1 where te; ,

thenX =t, x,=t, X, =-2tand X, =—t. Hence, the
solution set of (6) is A={(t,t,-2t,—t,t) :te; }cW". By

I
fact 2, W*1 D° :{0}. Therefore, by Theorem 2.4

Sci-Int.(Lahore),36(5),383-393,2024
{e, +e,+e,+e,+6, e +e,+e,e,+6, € +6 +6}
resolves V°. W
Lemma 2.17. The linear equations {(1,1,1,11), (1,11,-1-1),

(-11,-11,-1), (-111-11) } resolves V°.
Proof. Consider the linear system,
X +X, + X +X, +% =0
X, + X, + X =X, —X =0
=X +X, =X +X, =% =0
—X X+ X=X +X% =0
By elimination, we have 2x, + 2x, +2x,=0 and
—2X% + 2x, =0.
Thus, 4x, +2x, =0 this implies that x; is even and x3=0,
since X; € {-1,0,1} this implies that x, = 0, x; = 0, x; = 0 and

x5 = 0. Accordingly, by Theorem 2.4, the remark follows.

w
Theorem 2.18 f. =4.

Proof. Consider the set {0, €, +&, €, +€,€, +6} .
Claim 1. {0,€, +€;,€, +€, €, +&} resolves V°.
Let
v, =0=(0,0,0,0,0)
v, =e,+6 =(010,0,1)
v, =6, +6 =(0,0101)
v, =e,+6 =(0,0,011)
Thus, % =2(0,0,000)- (L1111 = (-1-1-1-1-1),
¥ =2(010,0) - (11111 = (-11-1-11), ¥ = 2(0,01,0,1)
~(11111) = (-1,-11,-11), and ¥ =2(0,0,01,1)~(1L1111)
=(-1-1-111). Suppose that {V,V,,V;,V,} resolves V°.
Then by Theorem 2.4, the only solution of the linear system
X-%} =0 for j=123...,n where X=(X,X,,%;,%,,X;) in
D'is x=0. However, it %% —0,%%-0,%% -0,
%% =0 that is,
% (-1-1-1-1-1)=0
% (-11-1-11)=0
% (-1-11-11)=0
%.(-1-1-111) =0
then,
=X =X, =X =X, —% =0
=X X, =X =X, + X% =0
—:—xz+xz—x4+xz=0 0
=X =X, =X+ X, +X% =0
Using  Gaussian
X +X + X+ X, +% =0
X, =—X;and X, +X =0

elimination, we solve(7). Then,

X, + X = Othis that

that

implies

implies X; ==X, and
—X; + X, =0 implies that X, = X, = —X; and also implies that

X =2% . Let X, =t where tej , thenx =2t, x, =-t,
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X, =—t, and X, =—t. Hence, the solution set of (7) is
A={(2t,-t,~t,—tt):te; JcW*". By fact 2,

r
W'l D° = {O} Therefore, by Theorem 2.4

{0,e, +6;, € +e;, €, +e}resolves V°.Accordingly, S, = 4.
WTheorem  2.19.

ﬁm+n < :Bm + an *

Proof. Consider {v,,...,v,} resolves V" and {uy,....u0}

Vi then (00 (Vo0 (Es),.. (B, )}

resolves V™" If we take s = and t = g , we can obtain
LBroin < P+ B that  the
{(v,0),., (v, 0), (B U)o (B UL DY [ oves V™0 W
Theorem 2.20. For n>6, g <n-1.

Proof. By the previous Theorem 2.18, we have f,=4.

resolves

To show vectors

Recall Lindstrdm’s inequality, A, .. <pB,+fB,. By the

B, < B+ B, for
B. < B+ B, s <4+(n-5), since S, <m (Lemma 2.15).
Thus, g, <n-1.

Lindstrom’s inequality,

W

Theorem 2.21. If n>5 then {g,e,,....,6,,} resolves V",
so ., <n-1.
Proof. Consider the set {€,€,,....,€, ,} . Let

W=2e ~E=(1-1-1...,-1)

0

¥ =2e,-E=(-11-1...,-1)

M

Wo=20 —E=(-1-1-1..-11-1)

Claim. The solution of the linear system X-% =0 in D" is
I

0.
We have,
X, =X, —%-K-x =0
=X+ X =X -K-x =0
M

=X =X =X -K+Xx_,-%x =0
Note that D" ={(x,X,,....X,): % €{-101} for all
i=123...,n}.
Claim. 1f {(x,X,,...,X,) is a solution to the above linear

system, then X =X, =...=X,, and (N—-3)x +x, =0.We
have,
1 -1 -1 L -1 -10
-1 1 -1 L -1 -10
M M MO M
-1 -1 -1L 1 -10
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1 ooL 0 -1 0]
01 0L 0 -1 000
MMMO M M MM
0 00OL 1 -1 0/
00 0L -1 1 0)0]
X—%,=0 & X=X,
X, =X, =0 & X=X,
M
X\ —X%,=0 & X_,=X_
that implies X=X =X =.=X_,. Moreover,
% = Y e = O = sl dndadidi = 0 = (0 =3+,
n-2terms n-3terms
Since, xeD", x,Xx, €{-10,1}. Hence,0=(n-3)X +X,
that  implies  (N—3)x, =—X,and  x =0.  Thus,
O=X=X=X=..=X,. If X =0, then
0=(n-3)(0)+x, that implies X, =0. Accordingly,

x=(0,0,0,...,0) = (I) This shows the claim. By Theorem 2.4,
{e,e,,.....6, ,} resolves V". w
Theorem 2.22. S =6.

Proof. Consider the set {€1,€,,€3,€, + €5, +€;,€ + €} .
Claim. {e,,€,,€;,€, +€;,65 +€;,6 +€} resolves V°.

Let v, —e =(10,0,0,0,000), v, =e, =(010,0,0,0,0,0),
v, =€, =(0,0,,0,0,0,0,0),V, =€, +¢, = (0,0,0,1,0,0,0,1) ,

v, =€ +6 =(0,0,0,0210,0,1), and
v, =e, +& =(0,0,0,0,010,1) . Thus,
¥ =2(1,0,0,0,0,0,0,0)

-(11111121) = (4-1,-1-1-1-1,-1-1),

8 =2(0,1,0,0,0,0,0,0)—(11111111) = (-1 -1, -1 -1,-1,-1-1),

% =2(0,010,0,0,00) - (1L1111111) = (-1, -11-1-1-1-1-1)

% =2(0,0010,0,00) - (11111,1,1,1) = (-1, -L-11-1-1-11)

¥ =2(0,0,0,010,0,1) - (11111111) = (-1, -1 -1,-11,-1-11)

% =2000,00101) - (1L1111111) = (-1 -1-1-1-11-11)

Suppose that {V,,V,,V,,V,,V;,V,} resolves V®. Then by

Theorem 2.4, the only solution of the linear system X- % =0

for j=12,3,...,n where X = (X,X,, %5, X, X, Xg» Xy, %) in D°
1

is X =0. However, if
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that is,

X-(L-1-11-1-1-11) =0
x-(-1-1-1-12,-1-11)=0
X-(-1-1-1-1,-11-11) = 0
then
X=Xy =Xy =Xy = Xg =X =X =% =0

XXy =Xy =Xy =X =X =X =X =0
X =X X =X =Xy =Xy =X, =% =0

X =Xy =X X, =X =X — X, + % =0 ®)

X =Xy =Xy =X X =X — X, + %X, =0

=X =X =X =X, =X + X, — X, + X =0.
Using Gaussian  elimination, we solve(8). Then,
X =X =X =X =X =X =X =% =0, X +X+% =0,

X, + X +% =0, —X,+X =0, and

X=X =X,
X; =X, —X;- Let X, =1 and X; =S where S,tej

—X; +X; =0. That

implies X, =X, = X, X, = —2X; —2X; , and
. Then,
X =t, x,=t, X, =t,X, =S, X, =5,% =8, X, =-2t-2s
, and x;=t—s. Thus, the set of (8) is
A={(ttts,55-2t—2st—s):t,se; }. Note that

D = {(X, %o Xy X X1 X5 %70 %) - % € {-10,1}, i =1,2K,8}.

solution

Hence, if (tt,t,s,5,5,-2t—25,t —s) e D° then, |-2t—2s|<1
implies that t =—-s and |t - S| <limplies that s =0. Note
that t=-s=-0=0. If t=-s=0, then

—2t—2s=-2(-s)—2(s)=2(0)-2(0)=0, t—s=0-0=0.
Hence, the only solution is b =(0,0,0,0,0,0,0,0) . Therefore,
s =6. w
Theorem 2.23. If n>8, f, <n—-2.

Proof. By the previous Theorem 2.22, we have f; =6.

Bron < P+ B, By the
inequality, BB+ P s then
B, <P+, s<6+(n-8), since f <m (Lemma 2.15)
By < By + B, g =n—2. Therefore, g <n-2.

W

Recall Lindstrom’s inequality,

Lindstrom’s

3. EXTENSIONS:

Theorem3.24. p =7.

Proof: Consider the set (e +e,+e,+e,+6 +6€ +¢€
+6,+€ +€,, €+ +6 +e+e +e+e +€,, €+e,
+6, +6 +€, +6 +6 +e,, e +e,+6 +6 +6e +6 +8
+€,,6 +€, +6,+€,+6, +6 +6 +€,, & +e,+6e,+¢e, +¢&
+€, +6 +€,,6 +€ +6 +€, +6 +6 +6 +€,).

Claim: The set (e, +€,+€,+€, +6 +6 +€ +6 +6 +€,,

€ +6 +6 +€+6 +6 +€ +¢€,, € +6,+¢, +€ +¢&

Sci-Int.(Lahore),36(5),383-393,2024
ey T+, € T +E +E +E, +E FE T, TE, +E,
e, + 8 +E +E +E,
€ +€ +6 +86, +6 +e +6 +e,) resolves 1"’

€ +6, +e;+€, +6 +€ +6 +€,,

Let V, =(6 +€, +€,+6, +6 +6 +€ +6 +6 +€5)
=(LLLLLLLLLY), V= (8 +€ +6 +8 € +6 +8 +8)
=(101,0111111), v,=(g +e,+6€, +6 +€, +6 +6 +€;)
=(1101011111), v, =(e+e,+e+e +€ +6+6+€,)
=(111,0101,111), v, =(e +e,+€+€,+6 +6+6+€,)
=(1111,010111), vy=(e +e,+e+e€,+6e+e, +e+e,)
=(1111101,011), v, =(e+e,+e+e,+e +6e+e+e,)
=(11111101071).

Thus,

¥=201111111111) - (1111111111) = (111,111,11,1,2),

% - 2(1,01011111) - (311111111) = (1, -11-1111111),

% -201101011111) - (1111111111) = (L1 -11-111111),

% =21110101111)-(1112221111) = (11,1, -11,-11111),

% =20111010111) - (L11L1L1111) = (1111 -11,-1111),

% = 21111101011 - (1111111111 = (11111 -11-111), and
% =201.1,111,01,0,1) - (1L1111111,1,1) = (111111 11, -11).
Suppose that {v,,v,,V,,v,,V,,V,,V,} resolves V'°. Then by

Theorem 2.4, the only solution of the linear system
x-¥ =0 for j=123...,n

. 10 .
X = (X5 Xy, Xg, Xyy X5, X0 X7, Xg, Xg, X0) N D is

where
1

x=0.

However, if

x-%=0
x-¥ =0
x-¥W =0
x-¥ =0
x-% =0
x-% =0
x-%W =0
that is,
x-(111,11.,11111) =0
x-(1,-11,-1111111) =0
X-(11-11,-111111)=0
x-(1,1,,-11,-11,1,1,1) =0
x-(11,4,,-11,-1111) =0
x-(11111,-11-111)=0
x-(1,1,4,,11,-11,-11) =0
Then,
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X+ Xy + X+ X, + X + X+ Xy + Xg + X + X, =0
X, =Xy +Xg =Xy + X+ Xg + X, + X5 + Xg + X, =0
X+ Xy =X+ Xy — X+ Xg + X, + X5 + X + X =0
X+ Xy + X =Xy + X —Xg + X, + X5 + X + X =0 9)
X H X+ X+ X, =X+ X =X, + X + X + X, =0
X+ X + X+ X, + X =X+ X, =X + X + X, =0
X+ X + X+ X, + X+ X =X, + X — X + X, =0

Using Gaussian elimination, we solve (9) . Then, x, + x, =0,

X3+ % =0, X, +%X =0, X +X +X+X +X+X+X
X+ X+ X =0,% +%X, =0,% +% =0, and
X, + % =0.

Let X, =rX,=S and x, =t where Tr,s;tej . Then
X =FrX =5, X,=t, X,=-5, X,=-1, X, =5, X =t,
Xg =—S, X, =—1, and X, = —r . Thus, the solution set of (9)
is A={(r,s,t,—s,~t,5,t,—s,~t,—r):r,ste; } cW™. By fact

I
2, W1 D" ={0}. Therefore, by Theorem 2.4 the set
(e, +e,+e;+€, +6 +6, +€ +6 +6 +€,,6 +€ +6 +6
+6, +6 +€ +€,,6 +€,+6, +6 +€, +6 +€ +€,
€ +e,+6+6,+6 +e+e +e,, € +€, +6,+6e, +€ +6
+6y + €,
+e, +6, +6 +6 +E resolves V'°. Hence, B,=7.W
Theorem 3.25. In n>10, then g, <n-3.
Proof. By the previous Theorem 3.24, we have g, =7.
o <pB.+p. By the
inequality, B, < B + B, then
Ba < Bio + Boao <7+ (n—10),since B, <m (Lemma 3.15)
B, < By + B0 =n—3. Therefore, B, <n-3. W
Theorem 3.26. S, =8 .
Proof. Consider the set (g +e,+e+e +e+e+¢g
+e,+e +te,te,te,,6+e+€ +€ +€ +6 +6€
o T8y T 6,
e +e, +e, +6,+6, +6 +€, +¢,+¢€,; +€,,
+e, +6 +€e, +6 +e,+e, +e,,
+6;, +€,+€,+¢€,,e +e, +e, +€, +€& +€, +6 +€
+€,+€,, &+, +6,+€, +6, +€,+€, +6 +€,+€,).
The set (e +e,+e +€,+6 +6 +€ +6 +¢
+e,+€,+€,, €+6+€ +6 +€ +6+6 +€,+€,+€
e +e,+e,+6 +¢€, +e, +€,+¢,+€, +6,,
+6,+6 +6 +6 +€,+€,+€ e +e,+e+e, +6
+e, +€, +¢,+¢€,; +€,, e +e,+e,+e, +6 +¢e +6
+e,+€,+€,, €+6€ +6 +e, +6 +6 +6 +6 +€e,+e,,

€ +6, +6 +¢, +6 +¢€, +€ +€,, € + e+ €

Recall Lindstrdm’s inequality, 2,
Lindstrom’s

e +6,+¢€ +6 +6, +6 +€,+¢,+¢€, +€,,
€ +6,+¢6

€ +6, +e,+¢, +€ +¢€

Claim:

25
€ +6,+¢6

2°

12
e +e,+e +e, +6 +€ +€ +€ +€,+¢€,)resolves V= .
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Let v, =(e, +e,+e,+e,+6 +6 +e,
+e, +e,) =(111111111111),
+e, +6, +6 +€,+e, +e,) =(1,011,0111,1111)

V;=(e +e,+e,+e+e +e +6 +e +e, +e,)
=(110110111111), v, =(e +e,+e,+6e +6
6, +€, +€, +8; +€,) =(L110,110L11111)

Vs=(e +e,+6,+€, +6 +e +6 +€,+€, +€,)
=(1111012,01111),
+e, +6,+€,+€, +e,) =(11111,0110111)
V, =(e +e,+e,+6, +6 +e +6 +e +6, +e,)
=(411112,011011),
+e; +e, +6 +e, +e,) =(11111,1,101101)
Thus,

Vi = 2(lLlLLLLLLL1,1) - (1,1,1,1,1,1,1,1,1,1,1,1)
=(111111111111)

V> =2(101101111111) - (1111111111,11)
=(1-112,-11111111)
vs=2(110,11,0111111)-(111111111111)
=(11-122,-1111111)
va=2(111011011111) - (1111111,11111)
=(111-222,-111111)

vs =2(1111012,01111) - (11112,1,112,1,11)
=(1111-222,-11111)

Ve =2(11111,012,0111) - (1111121,111,11)
=(11111-221,-1111)

vi =2(111111,0,11,0,11) - (111111111111
=(111111-112,-111)

Vs =2(11111110110,1) - (1111111,111,11)
=(1111111-111-11)

Suppose that {vl,vz,v3,v4,V5,vs,V7,V8} resolves V¥ . Then

+6, +6, +€,
v, =(e +e,+e, +¢&

Vs =(e, +e,+e,+e, +¢

V, =(e, +e,+€e,+¢€, +6

by Theorem 2.4, the only solution of the linear system
x-v;j=0 for j=123...,n

X:(X1!X21X31X41X5’X51X71X81ng Xw,Xll,Xlz)in D12 is X:6.

However, if

where
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That is,
X Ll.llllllll.ll) =

(
(1-111-11111111
(11-111-1111111
x-(111-111-111111
(
(
(
(

0

x )
)

)
1111-111-11111)
)

)

)

X

X

x-(11111-111-1111
111111-111-111

1111111-111-11

X

0
0
0
0
0
0
0

X

Then,
X+ X, + X+ X, + X5+ X5 + X, + X+ Xg + X+ Xy + X

X=X, X+ X, =X+ X5 + X + X+ X5 + X+ X, + X,
X+ X, =X+ X, + X — X + X+ X5+ X + X+ X3 + X,
X+ X+ X =X, + X5+ Xg — X, + X5+ X + X+ X3 + X,
XX + X+ X =X+ X + X = Xg + X + X9 + X + X
XX X+ X+ X =X+ X+ X =X + X, +X; +X,
Xp+ X, X+ X, X+ X — X, + X+ Xy — Xg + Xy X
_X1+X2+X3+X4+X5+X6+X7—X8+X9+X10—X11+X12

O O O O O o o o

Using Gaussian elimination, we solve (10). Then,

X, Xy + X X, X X X A+ X X+ X+ X, +X, =0,

X, +% =0, X, +X% =0, X,+% =0, X, +X% =0,
X +X =0, X, +X%X,=0 and X +Xx,=0. Let x =q ,
X, =r, X, =5,and X, =t where q,r,s,t €] .Then, X =q
—, X =-S, X, =—t, x,=r
, X, =S, X, =t and X, =—q—s—t. Thus, the solution of
the set of (10) is A={(q,r,s,t,—r,—s,~t,r,st,—r,—q—s—t)
‘q,rstell}cW*  Byfact2, W' D" ={6} . Therefore,
by Theorem 2.4 the set

(e +e,+e,+e,+6 +e,+e +6+6 +e,+e, +6,,

e +6+€e, +6 +€ +6+6 +€,+€, +€,,

e +e,+¢e, +6 +€, +¢,+¢€,+¢,+¢€, +¢e,,

e +e +6 +6 +e +6+6 +€,+€,+€

,X2=I’,X3=S,X4=t,X5=

2
e +e,+e, +¢e,+€, +€,+e,+€,+€,+¢€,,
e +6, +e,+¢, +6 +€, +6 +€,+€,+¢€,,
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€ +e, +6 +e +6 +6 +6 +6 +€, +€,,

e +€,+6,+€, +6 +6 +€ +6 +€,+€,) resolves V?
Hence, B, =8 . w
Theorem 3.27:In n>12, then f, <n-4 .

Proof: By Theorem 3.26, we have f,=8. Recall
Lindstrém’s, B,.., < B, + B, - By the Lindstrom’s inequality,
B, <PB,+B, 1, then B <pB,+ <8+(n-12), since

n-12 —
B, <m (Lemma 3.15) B, < p,+pf,,, =n—4. Therefore,
B, <n—4. W
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