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ABSTRACT:: This paper introduces a new distribution based on the Weibull distribution, known as Area biased weighted 

Weibull distribution (AWWD). Some characteristics of the new distribution are obtained. Plots for the cumulative distribution 

function, pdf and hazard function, tables with values of skewness and kurtosis are provided. We also provide results of 

entropies and characterization of AWWD. As a motivation, the statistical application of the results to a problem of ball bearing 

data has been provided. It is found that our recently proposed distribution fits better than size biased Rayleigh and Maxwell 

distributions. Since many researchers have studied the procedure of the weighted distributions in the estates of forest, 

biomedicine and biostatistics etc., we hope in numerous fields of theoretical and applied sciences, the findings of this paper 

will be useful for the practitioners.  
 

Keywords: Weighted distribution, Weibull distribution, moments, estimation, recurrence relation, entropy, characterization. 

 
1. INTRODUCTION. 
Weighted distributions are suitable in the situation of unequal 

probability sampling, such as actuarial sciences, ecology, 

biomedicine, biostatistics and survival data analysis. These 

distributions are applicable when observations are recorded 

without any experiment, repetition and random process. 

For the collection of suitable model for observed data, the 

weighted distributions has been used as a device during last 

25 years. The idea is most applicable when sampling frame is 

not available and random sampling is not possible. Firstly the 

idea of weighted distributions was introduced by Fisher [1]. 

Cox [2] initially provided the idea of length-biased sampling 

and after that Rao [3] established a unifying method that can 

be used for several sampling situations and can be displayed 

by means of the weighted distributions. Cox [4] estimated 

mean of the original distribution built on length biased data. 

Zelen [5] presented the concept of weighted distribution in 

studying cell kinetics and early discovery of disease. Warren 

[6] applied the distributions in forest product research. Rao 

and Patil [7] surveyed on the applications of these 

distributions correlated to the human population and ecology.  

Patil and Rao [8] also discussed weighted binomial 

distribution to model the human families and estimation of 

the wildlife family size. Gupta and Keating [9] described the 

relationship between reliability measures of original and size-

biased distribution. Arnold and Nagaraja [10] gave the idea of 

bivariate weighted distribution whereas Jain and Nanda [11] 

extended this idea and discussed multivariate aspect of 

weighted distribution.  

  Let  ;f x 
 
be the pdf of the random variable X and   be 

the unknown parameter.  

The weighted distribution is defined as; 
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Where w(x) is a weight function. When w(x) =    ,
 
then 

these distributions are termed as size - biased distribution of 

order m. When 1m  it is called size biased of order 1 or 

say length biased distribution, whereas for 2m  it is called 

the area - biased distribution. [Ord and Patil [12]; Patil [13]; 

Mahfoud and Patil [14]]. 

In forest product research, equilibrium and length biased 

distributions have been used as moment distributions. Kochar 

and Gupta [15] discussed the moment distributional 

properties in assessment with the actual distributions and 

derived the bound on the moments of moment distributions. 

In investigating the area of ecology and wildlife, Gupta [15] 

used inferential tools to improve the estimates for the 

reliability measures of size biased inverse Gaussian 

distribution. 

Oluyede [16] described inequalities for the reliability 

measures of size-biased and the original distributions. 

Navarro et al. [17] discussed characterization of the original 

and the size-biased distribution using reliability measures. 

Gove [18] offered the uses of size-biased distributions in 

forest science and ecology. Sunoj and Maya [19] established 

relationships among weighted and original distributions in the 

situation of repairable system and also characterized the 

sized-biased and the original distribution. Shen et al. [20] 

used semi-parametric transformations to model the length 

biased data. Hussain and Ahmad [21] presented 

misclassification in the size-biased modified power series 

distributions and its applications. 

Mir and Ahmad [22] derived generalized forms of size-biased 

discrete distributions and discussed the practical applications 

in the field of Medical, Zoology and Accidental studies. Mir 

and Ahmad [23] derived size biased Geeta distribution and 

size-biased consul distribution respectively, different 

properties are discussed and contrasts with original 

distributions are also done. Das and Roy [24] established 

size-biased form of generalized Rayleigh distribution and 

apply the consequences to the environmental data.  

Das and Roy [25] applied the concept of size-biased sampling 

in the field of environmental studies. Dara [26] derived 

reliability measures for size-biased forms of several moment 

distributions as the special cases of moment distributions. 

Iqbal and Ahmad [27] found compound scale mixtures of 

limiting distribution of generalized log Pearson type VII 

distribution with different continuous and moment 

distributions. Hasnain [28] introduced a new family of 

distributions named as exponentiated moment exponential 

(EME) distribution and developed its properties. Iqbal et al. 

[29] found a more general class for EME distribution and 
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built up different properties including characterization 

through conditional moments.  

Zahida and Munir [30] worked on Weighted Weibull 

Distributions (WWD), Double Weibull Distributions (DWD), 

Weighted Double Weibull Distributions (WDWD), Double 

Weighted Exponential Distributions (DWED) (both in size 

biased and area biased). Some basic theoretical properties of 

all these distributions including cumulative density function, 

central moments, skewness , kurtosis and moments  are  

studied. Shannon entropy, Renyi entropy, moment generating 

function and information generating function of all these 

distributions are derived. Reliability measures including 

survival function, failure rates, reverse hazard rate function 

and Mills ratios of these distributions are also obtained. 

Parameters are evaluated by using method of maximum 

likelihood estimation along with derivation of practical 

examples. 

2. Weibull Distribution is an important and well 

known distribution which attracted statisticians, working in 

various fields of applied statistics as well as theory and 

methods in modern statistic due to its number of special 

features and ability to fit to data related to various fields like 

as life testing, biology, ecology, economics, hydrology, 

engineering and business administration. This distribution is 

one of the members of the family of extreme value 

distributions. Weibull distribution is considered as the limit 

distribution of the smallest or the greatest value, respectively, 

in a sample with sample size  . This distribution comprises 

the exponential and the Rayleigh distributions as superior 

cases. In 1939 Swedish physicist introduced a distribution 

named as Weibull distribution [31]. Estimation procedures 

were carried out by Richard et al. in [32] for the shifted 

Weibull distribution, when all its parameters are unidentified. 

Mudholkar et al. [33] defined a constructive simplification of 

the Weibull distribution and suitable it to survival data. 

Marshall and Olkin [34] presented a process for addition a 

new parameter to an existing two parameter Weibull 

distribution and this distribution is known as the Marshall-

Olkin extended distribution. A model named modified 

Weibull extension with three parameters was developed by 

Xie et al. [35]. This model is used for growing, bathtub-

shaped, or declining failure rate function and the resulting 

Weibull probability plot is concaved. Further, Tang et al. [36] 

have permitted out the statistical analysis of this extension. 

Ghitany et al. [37] displayed that the Marshall-Olkin 

extended Weibull distribution could be attained as a 

compound distribution with collaborating exponential 

distribution. Nadarajah and Kotz [38] provided products and 

ratios of Weibull random variables. Extensive form of the 

Weibull distribution was proposed by Al-Saleh and Agarwal 

[39] which has two shape parameters.  

McKay [40] presented a bivariate gamma distribution, which 

is one of the initial processes of the bivariate gamma 

distributions. A symmetrical bivariate gamma distribution 

with combined characteristic function was discussed by 

Kibble [41] and Moran [42]. Sarmanov [43,44] offered 

asymmetrical bivariate gamma distributions, which are 

additions of Kibble [41] and Moran [42] bivariate gamma 

distributions. Jensen [45] and Smith et al. 4 [46] studied 

Kibble bivariate gamma distributions. Jensen [47] also 

calculated Moran Recently Nadarajaha and Gupta [48] 

presented two bivariate gamma distributions constructed on a 

characterizing property relating products of gamma and beta 

random variables. Saboor and Ahmad [49] defined a bivariate 

generalized gamma-type function expending another form of 

confluent hypergeometric function of two variables and 

discuss some of its statistical functions. The moment 

generating function of this distribution was stated in terms of 

H and G functions. 

 Provest and Saboor [49] introduced some properties 

of three parameter weighted Weibull distribution. He defined 

the probability density function as 

             
    

 
 
  

              

 (   
 

 
)

        x > 0 

                          (1.2) 

with      , where   is the shape parameter.  

2.1 Area Biased Weighted Weibull Distribution 

Suppose X has a pdf g (x;  , k,  ) with unknown parameters 

                                the corresponding 

distribution, called area biased weighted Weibull distribution 

is of the form: 
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, 0 < x <            

               (1.3) 

here         are shape parameters and   is the scale 

parameter. 

Figure (1.1) shows the graphs of AWWD density function for 

various values of parameters: 
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Case 1 

i)   = 1, k           

ii)   = 2, k           

iii)   = 3, k           

                              g(x) 

           x                                                                                                        
Fig 1.1.1 Probability density function of AWWD for the indicated values of    , k and   

Case 2 

i)   = 1, k          

ii)   = 2, k          

iii)   = 3, k          

 

                                ) 

                             x 
Fig 1.1.2 Probability density function of AWWD for the indicated values of    , k and   

Cumulative Distribution function of AWWD. 

Distribution function of a density function is defined as: 
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where  (a, x) = ∫          
 

 
 denotes an incomplete gamma function. 
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                               X 
Fig 1.2 Distribution function of AWWD for the indicated values of  , k and   

 

1.3 Survival Function 

The survival function is an important measure in a reliability studies, therefore by definition, the survival function for AWWD 

is: 

S           

             = 
 (  

   

 
        ) 

 (  
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                                        (1.5) 
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Fig. 1.3.1 Distribution function of AWWD for the indicated values of     k and   

 

1.4 Hazard Rate Function of AWWD 

The hazard function is the instant level of failure at a certain 

time. Characteristics of a hazard function are normally related 

with definite products and applications. Different hazard 

functions are displayed with different distribution models. 

The concept of this function was firstly used by Barlow [50] 

and its properties were firstly investigated by Watson and 

Leadbetter [51]. Dhillon [52] was another prominent name in 

providing consciousness about the hazard rate function. Some 

properties of Hazard rate were pointed out by Nadarajah and 

Kotz [53]. The reliability measures of weighted distributions 

were evaluated by Dara [26]. Hazard rate of AWWD is 

defined as: 
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                    X 

Fig. 1.4.1 Hazard Rate Function of AWWD for the indicated values of    k and   

 

1.5 Reverse Hazard Rate Function 

This function of AWWD is defined as  
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r(x)   

                            

 x 
Fig. 1.5.1 Reverse Hazard Rate function of AWWD for the 

indicated values of  , k and   

1.6 Moment Generating Function of AWWD 

The moment generating function of AWWD is defined as: 
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Using Eq. (1.3) 
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Using the transformation and then simplification, it becomes: 
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1.7 Information Generating Function 

The Information Generating Function is defined as: 

T(s) = E [    ]     ∫ (    )
 
  

 

 
 

Using Eq. (1.3) 
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Using the transformation s        and applying incomplete 

gamma function: 
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Remark 1.7.1 For Shannon entropy  
 

  
    |    

3. Limit and Mode of the Function 

Note that the limit of the density function given in (1.3) is as 

follows: 

x
   
→     g            =  0                          (2.1)   

 
   
→                                           (2.2) 

2.1. Mode of AWWD 

Taking log of Eq. (1.3) on both sides: 

log g (x;      ) = log (
   

  
 
 
 
 
 

 (  
   

 
)
) + (       log 

                             
Differentiating Eq. (2.1.1) with respect to x, we obtain: 
 

  
   og g (x;      )) = 

       

 
                (2.1.2) 

By putting 
       

 
          = 0, we have x = (

     

   
 )

 

 
  

and at every value of x,        . 
Table 2.1 

Mode of AWWD for different values of the parameters 

k     Mode 

1 2 0.500 2.000 

1 2 0.250 2.828 

1 2 0.125 4.000 

2 2 0.500 2.236 

2 2 0.250 3.162 

2 2 0.125 4.472 

4. Moments 

The moments are used to find the moment ratios. 

The moments about origin are as: 
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For r  1, 2, 3, 4, the first four moments about the mean  

are: 

   = 0 

      
  

    
  

  

  

  = (     
   

  

  

   =    
  

        
  

 +2  
  

  

  

=  
  

 (         2  
   

  =    
  

        
  

  + 6  
    

  

   3  
  

  

  

               =  
  

  (        +6  
       

   

4.1  Moment Ratios 
Table 3.1 

Measure of Coefficient of Skewness and Kurtosis for AWWD 

  k   
1  

  
 

0.5 3.200 1.0 0.0168 2.8561 

0.5 3.250 1.0 0.0067 2.8567 

0.5 3.280 1.0 0.00073 2.8573 

0.5 3.282 1.0 0.00034 2.8573 

 

From Table, it is clear that AWWD is almost symmetrical 

and platykurtic for 3.200  k   3.282. 

3.2 Mixed Random Variables of AWWD 

In the next theorem we show some averages of the mixture 

random variables comprising algebraic and logarithmic 

functions with respect to AWWD are found. Some identities 

from Gradshteyn and Ryzhik [2007], Table of integral, series 

and products to find these results are used. 

Theorem 3.2.1 

Let X is the random variable on its support (0,     then   
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From Eq. (1.3) 
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after simplification, we have: 
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after simplification, we have: 
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5. Estimation of parameters 

Maximum likelihood (ML) Estimation is used to estimate the 

parameters of AWWD. If           be a random sample 

from a population having pdf g(x|        the likelihood 

function of AWWD distribution may be defined as: 
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Here the independent observations are               then the 

log likelihood function of the distribution is: 
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ML estimates can be found by solving Equations 
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Equations (5.1), (5.2) and (5.3) are nonlinear equations and 

can be solved through Mathematica software. 

The asymptotic variance-covariance matrix is the inverse of 
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6. Recurrence Relation of  Area Biased Weighted 

Weibull Distribution 

In mathematics, a recurrence relation is an equation that 

recursively expresses a sequence of values, once one or more 

primary terms are assumed: each further term of the sequence 

is defined as a function of the preceding terms. Here we 

derive the recurrence relation in conditional moments. 

 

Theorem 6.1 

Let X  be the random variable on its support (0, ). Then 

recurrence relation through conditional moments for all t  0 
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Proof: 

 Let X be the area biased weighted Weibull 

distribution. Then 
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Integration by parts, we get: 
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After some simplification, we will obtain (6.1) 

6.1 COROLLARY.  IF   = 0 then Eq. (6.3) reduces for 2- 

parameters Weibull distribution. 

6.2 Entropy 

Entropy is considered as a major tool in every field of science 

and technology. In Statistics entropy is considered as an 

amount of incredibility. Different ideas of entropy have been 

given by Jaynes [55] and the entropies of continuous 

probability distributions have been approximated by Ma [56]. 

Shanon entropy is defined as H(X) of a continuous random 

variable X with a density function f(x)  
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Putting (6.2.2) and (6.2.3) in (6.2.1) 
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Alfred Renyi [1921-1970] entropy is usually known as the 

generalized procedure of Shannon entropy. The Renyi 

entropy is named after. It is useful in ecology and statistics. It 

is defined as 
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Putting value of g(x) from Eq. (1.3) in above equation, we 

get: 
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7. Characterization of Area Biased Weighted 

Weibull Distribution 

 A characterization is a definite distributional 

property of statistics that uniquely defines the related 

stochastic model. There are some functions related to a 

probability distribution that uniquely classify it. Such 

functions are called characterizing functions. Here we are 

characterizing the AWWD distribution through conditional 

moments by using the characterizing function  f x . 

Theorem 7.1 

 Let X be the random variable on its support (0,  ). 

Then the following condition holds for characterizing the 

AWWD, 
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 ̅   
∫            
 

 
 

  = 
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)  ̅   

∫       
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   ̅   
∫                

  
 

 
 

Using the transformation,        we have: 
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   ̅   
∫      
 

   
 

           = 
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Conversely 

 
 

 ̅   
∫              
 

 
 = 

 

   ̅   
      

 Differentiating both sides w.r.t, ‘t’, we get 

              = 
      

  
(       ) 

after simplification 

     (t) = p          

where p = 
  

  
 
  

 
 

 (  
   

 
)
 is constant. 

 

8.Numerical Example. 

8.1. The Ball Bearing Data Set 

See for data set published in Lawless [57]. 

Table 8.1 

Ball Bearing Data Set 
17.88 28.92 33.0 41.52 42.12 

45.6 48.8 51.84 51.96 54.12 

55.56 67.8 68.44 68.88 84.12 

93.12 98.64 105.12 105.84 105.84 

127.92 128.04 173.4   
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Table 8.2 

Goodness-of-Fit Statistics and Parameters’ Estimates 

Distributions  ̂  ̂  ̂  ̂  ̂   
    

  

Size biased  

Rayleigh 
- - - - 46.764 0.708 0.134 

Size biased  

Maxwell 
- - - 40.50 - 1.693 0.278 

Weighted  

Weibull(area biased) 
0.8151 0.6047 3.7599 - - 0.060 0.059 

Weighted  

Weibull (size biased) 
0.8151 0.6047 4.7599 - - 0.1909 0.0332 

In Table 8.2, the approximations of the parameters are 

specified. For goodness-of-fit statistics Anderson-Darling and 

Cramer-von Mises tests have been used, the weighted 

Weibull model proposals the best fitting: 

                     

 

Fig.8.1 Weighted Weibull size biased (dashed line), Weighted 

Weibull area biased (dotted line), Maxwell (Solid Line) 

and Rayleigh (dotted dashed Line) on the Histogram for 

the Ball Bearing Data 

 

                      

 

Fig.8.2 Weighted Weibull Density Estimates, cdf Estimates and 

Empirical cdf 

 

Concluding Remarks 

In this paper, we discussed the Area Biased Weighted 

Weibull Distribution (AWWD).Some characteristics of the 

newly proposed distribution are obtained. The plots for the 

cdf, pdf and hazard function and tables for skewness and 

kurtosis for different values of parameters have been derived. 

Also the results of entropies and characterization have been 

proved. The estimators of the parameters are discussed 

through maximum likelihood estimation technique. The 

statistical application of the results to a problem of ball 

bearing data has been provided. It is found that our newly 

proposed distribution fits better than size biased Rayleigh and 

Maxwell distributions. 
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